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The numerical study of the #ow past a circular cylinder forced to oscillate transversely to the
incident stream is presented herein, at a "xed Reynolds number equal to 106. The "nite element
technique was favoured for the solution of the Navier}Stokes equations, in the formulation
where the stream function and the vorticity are the "eld variables. The cylinder oscillation
frequency ranged between 0)80 and 1)20 of the natural vortex-shedding frequency, and the
oscillation amplitude extended up to 50% of the cylinder diameter. Since the resolution of the
characteristics of synchronized wakes is the focus of the study, the "rst task is the determination
of the boundary of the lock-in region. The computation revealed that, when the cylinder
oscillation frequency exceeds the frequency of the natural shedding of vortices, the #ow is not
absolutely periodic at subsequent cycles but a quasiperiodic #ow pattern occurs, which creates
di$culty in the determination of the lock-in boundary. The time histories of the drag and lift
forces for various oscillation parameters are presented, while the vorticity contours were
favoured for the numerical #ow visualization. The hydrodynamic forces, the phase angle
between the lift force and the cylinder displacement, and the parameters of the wake geometry
when steady state was reached, are presented in cumulative diagrams. These diagrams indicate
the e!ect of the oscillation parameters on the hydrodynamic forces and on the wake
geometry. ( 2000 Academic Press
1. INTRODUCTION

IT IS WELL-KNOWN THAT at Reynolds numbers in excess of approximately 40 the wake of
a circular cylinder in steady #ow consists of two staggered rows of vortices, the vortices of
each row being shed alternately from either side of the body. As the vortices are shed,
a periodic force is exerted on the cylinder, whose component in the transverse direction (lift
force) has the same frequency as the vortex-shedding cycle, while the frequency of its
streamwise component (drag force) is equal to twice the shedding frequency. Vortex
shedding can be dramatically changed when a cylinder oscillates in a #ow stream, in the
cross-#ow or in the streamwise direction. In certain ranges of amplitude and frequency of
oscillation the body motion can control the instability mechanism which leads to vortex
shedding. One of the most interesting characteristics of this #uid}body interaction is that of
synchronization, or &&lock-in'', between the vortex shedding and vibration frequencies. The
vortex-shedding frequency diverges from that corresponding to a "xed cylinder and be-
comes equal to the frequency of the cylinder oscillation, when the oscillation amplitude
exceeds a critical threshold.

These complicated #ow}solid body interaction phenomena drew the attention of re-
searchers in the last several decades. Bishop & Hassan (1964) investigated experimentally
0889}9746/00/080819#33 $35.00/0 ( 2000 Academic Press
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the forced oscillations of a circular cylinder in the cross-#ow direction, with special
attention to the hydrodynamic forces exerted on the body, over a wide range of driving
frequencies and oscillation amplitudes. Their experiments revealed the magni"cation of the
mean drag and of the lift amplitude when the excitation frequency is close to the natural
shedding frequency, and a sudden change in the phase angle between the lift force and
cylinder displacement when the oscillation frequency is varied around the shedding fre-
quency. Koopmann (1967) conducted a #ow visualization study for the investigation of the
e!ect of the cylinder excitation in the transverse direction on the vortex street wake. He
found that synchronization of the vortex-shedding frequency with the cylinder oscillation
frequency (lock-in) occurred above a threshold amplitude of oscillation, which became
larger as the deviation of the oscillation frequency from the natural shedding frequency was
increased. Moreover, he reported that the cylinder vibration resulted in the alignment of
the vortex "laments with the cylinder axis, and the reduction of the lateral spacing of the
vortices with increasing amplitude of oscillation. Honji & Taneda (1968) examined the
vortex-street wake of a circular cylinder undergoing transverse oscillations in a uniform
stream at Reynolds numbers between 70 and 163. They determined the extent of the lock-in
region, and conducted #ow visualization of the wake and measurements of the drag force.
Gri$n (1971) investigated the alterations of the geometry of the cylinder wake induced by
di!erent conditions of forced excitation from velocity measurements. His experiments
revealed that the vortex formation length which was used as a characteristic parameter, is
substantially in#uenced both by the frequency and the amplitude of the forced oscillations
at lock-in. Gri$n & Ramberg (1974) examined the e!ect of lateral cylinder vibrations on the
geometry and vortex strength of a periodic wake. For the evaluation of the unknown
parameters, the #uid velocities obtained from hot-wire measurements were matched with
a mathematical model based on the Oseen vortex. Sarpkaya (1978) measured the hy-
drodynamic forces on a circular cylinder forced to oscillate transversely to the incident
stream. He decomposed the total transverse force into in-phase and out-of-phase compo-
nents which display abrupt jumps at resonance. Bearman & Currie (1979) measured the
pressure on a circular cylinder oscillating transversely to the main #ow at 903 from the
leading edge, over a wide range of oscillation amplitudes and reduced velocities at lock-in.
They found an abrupt phase jump between pressure at 903 and the cylinder displacement
close to the resonant frequency. This result is in close agreement with Feng's (1968)
measurements, in which an elastically mounted cylinder was free to oscillate transversely to
the incident stream. Zdravkovich (1982) analysed the #ow visualization patterns of previous
investigators and suggested that the phase jump of the hydrodynamic forces can be
explained by a change of the timing of the vortices being shed with respect to the
displacement of the cylinder. Ongoren & Rockwell (1988) conducted a #ow visualization
study in the near wake of a sinusoidally excited circular cylinder using the hydrogen bubble
technique. They noticed that when the cylinder oscillation frequency was lower than
the natural shedding frequency, the vortices were shed when the cylinder had reached the
amplitude on the same side. As the oscillation frequency was increased above the natural
shedding frequency, the vortices were shed on the opposite side from which the amplitude of
the cylinder displacement was reached. Williamson & Roshko (1988) conducted experi-
ments at which the period of forced oscillation was varied up to three times the period of
natural shedding and the amplitude up to "ve cylinder diameters. They observed a series of
vortex-shedding patterns in the synchronization region, which they classi"ed in terms of the
number of vortices shed per oscillation cycle. One of the most interesting results of this
research is that, if the reduced velocity exceeds a critical threshold for a given amplitude of
oscillation, the vortex pattern diverges from that according to which two vortices are shed
per oscillation cycle (&&2S''mode) and takes the more complicated form at which two pairs of
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vortices are shed per oscillation cycle (&&2P'' mode). The same investigators attributed the
phase jump near resonance established from the force measurements of Bishop & Hassan
(1964) to the sudden transition between these two modes, since this very important study
was based on #ow visualization and did not comprise force measurements. Gopalkrishnan
(1993) measured the hydrodynamic forces on a transversely excited cylinder in a water
channel, undergoing sinusoidal and beating oscillations. Brika & Laneville (1993) examined
the cross-#ow oscillations of a long #exible cylinder and obtained hysteresis loops in the
oscillation amplitudes. They observed that, for the same stream velocity, the high-amplitude
branch is associated with the 2P mode, while the low-amplitude branch of the loop with
the 2S mode. More recently, Gu et al. (1994) conducted a #ow visualization study at
Reynolds numbers 185 and 5000 using PIV and PTV techniques. They con"rmed the e!ect
of the cylinder oscillation frequency on the timing of vortex shedding observed in previous
investigations and, most importantly, they noticed the existence of two saddle points in the
streamline pattern, when the cylinder oscillation frequency exceeds the natural shedding
frequency.

Apart from the experimental studies, numerical solutions of #ow around oscillating
cylinders have been conducted in the last three decades, favoured by the enormous increase
in power of digital computers. Sarpkaya & Shoa! (1979) employed a discrete vortex method
for the solution of vortex-excited oscillations of a circular cylinder at similar conditions with
those of the experimental investigation conducted by Feng (1968) at subcritical Reynolds
numbers. Hurlbut et al. (1982) favoured "nite-di!erence methods for the solution of #ow
about a cylinder oscillating in the streamwise and in the transverse direction. Chilukuri
(1987) used a "nite di!erence scheme for the solution of #ow past transversely vibrating
cylinders, while Lecointe & Piquet (1989) investigated numerically the vortex-shedding
characteristics behind a circular cylinder performing in-line and lateral oscillations. Mittal
& Tezduyar (1992) simulated numerically the transverse oscillations of an elastically
mounted cylinder at Reynolds numbers extending up to 360 using the "nite element
technique. Nomura (1993), Anagnostopoulos (1994) and Wei et al. (1995) investigated the
#ow past an elastically mounted cylinder in the stable range (Re(150) employing "nite
element schemes, and used the experimental results by Anagnostopoulos & Bearman (1992)
for the validation of their results. Meneghini & Bearman (1995) used a discrete vortex
method for the simulation of oscillatory #ow past a circular cylinder at Re"200. They
performed computations in which the frequency of the oscillatory #ow was varied around
the natural shedding frequency while the oscillation amplitude was extending up to 60% of
the cylinder diameter, and they determined the boundary of the lock-in region. On the other
hand, Copeland & Cheng (1995) focussed their attention on low oscillation amplitudes at
Re"200, using a spectral element technique. They noticed that when the cylinder was
forced to oscillate at a frequency higher than that of the natural vortex shedding, the
hydrodynamic forces displayed an aperiodic character, accompanied by alterations in the
#ow pattern. Lu & Dalton (1996) conducted a numerical study of #ow around a cylinder
excited transversely at Reynolds numbers equal to 185, 500 and 1000, for various oscillation
frequencies and amplitudes. Their numerical visualization results revealed that the oscilla-
tion frequency at which vortex switching occurs decreases slightly with increasing Reynolds
number. The #ow pattern they obtained at Re"185 agrees favourably with that derived
experimentally by Gu et al. (1994). Akbari & Price (1997) employed a vortex method for the
simulation of the #ow around a transversely oscillating cylinder at Reynolds numbers
ranging between 200 and 1000. They found that when the cylinder oscillation frequency
exceeded the natural shedding frequency, lock-in occurred at higher amplitudes than those
observed experimentally by Koopmann (1967) and numerically by Meneghini & Bearman
(1995). Another study is that by Zhang & Dalton (1997), who simulated numerically the
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forced oscillation of a cylinder in the cross-#ow direction at Reynolds numbers equal to 200
and 850, employing a "nite di!erence technique.

In the present study, the numerical solution of #ow past a cylinder forced to oscillate
transversely to the incident stream was conducted, using the "nite element technique. The
Reynolds number was held constant equal to 106, equal to that of a related study
concerning the #ow around a "xed cylinder (Anagnostopoulos 1997). The "rst task of the
study was the determination of the boundary of the lock-in region. Afterwards, computa-
tions at various conditions of the cylinder excitation were conducted, in which, f

r
, which

denotes the ratio of the cylinder oscillation frequency, f
c
, to the natural shedding frequency,

f
s
, was varied between 0)80 and 1)20, and the oscillation amplitude, A, was increased to 50%

of the cylinder diameter. The time histories of the hydrodynamic forces in nondimensional
form are presented, while the equivorticity lines were favoured for the determination of the
wake geometry. To elucidate the e!ect of the transverse cylinder motion on the hy-
drodynamic forces and on the cylinder wake, the mean drag, the lift amplitude, the phase
angle between the lift force and the cylinder displacement, and the parameters of the wake
geometry when steady state was reached are illustrated in cumulative diagrams. Although
the study was conducted at a low Reynolds number in order to facilitate the solution and
make comparisons with available experimental data, more general conclusions can be
extracted, which are applicable to #ows at higher Reynolds numbers.

2. THE COMPUTATIONAL TECHNIQUE

2.1. THE GOVERNING EQUATIONS

The method used in the present study is similar to that employed by Anagnostopoulos
(1989, 1994) for the simulation of #ow around a vortex-excited cylinder in the transverse
direction. The mathematical model of the problem consists of the Navier}Stokes equations,
in the formulation where the stream function, W, and the vorticity, f, are the "eld variables.
If n and n#1 are two successive time levels separated by a time Dt, the governing equations
become
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2.2. THE BOUNDARY CONDITIONS AND THE COMPUTATIONAL MESH

The "nite element mesh used by Anagnostopoulos (1997) for the numerical visualization of
the #ow pattern around a "xed cylinder, was also employed in the present solution. It
contains 5801 nodes and 11 244 three-node triangular elements.

On the in#ow boundary, the boundary condition for the stream function is LW/Ly";,
where; is the free-stream velocity. The stream function was considered constant along the
boundaries parallel to the approaching stream, while the vorticity was taken equal to zero
on the in#ow boundary and along the external boundaries parallel to the incident stream.
These boundary conditions represent the #ow in a channel without friction on the channel
walls. On the out#ow boundary the boundary conditions for the stream function and the
vorticity were approximated by setting their derivatives in the direction normal to the
boundary equal to zero.
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The boundary condition for the stream function on the cylinder surface is derived from
the impermeability condition, namely
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c
sin h, (3)

where ;
c

is the instantaneous cylinder velocity, and s the tangential direction shown
together with its perpendicular n in Figure 1.

The vorticity on the cylinder boundary is given by
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therefore, equation (4) becomes
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Assuming linear interpolation of the vorticity between the nodal points A and B of
Figure 1 and integrating over the length Dn of the segment AB we obtain
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Figure 1. De"nition sketch.
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The integration of equation (7) yields
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which is the expression used for the evaluation of the vorticity on the cylinder in the
present study. Equation (8), although somewhat di!erent from those used previously by
Anagnostopoulos (1989, 1994) for the evaluation of the vorticity generated on a trans-
versely oscillating cylinder, was favoured in the present investigation for reasons of consist-
ency with the related study for a "xed cylinder (Anagnostopoulos 1997).

2.3. THE FINITE ELEMENT EQUATIONS AND THE SOLUTION ALGORITHM

Applying Galerkin's method to equations (1) and (2) for each element and assembling for
the whole domain, the following equations are obtained:
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where [K
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] and [K

4
] are square matrices, whereas MR
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column vectors.
Since the position of the oscillating cylinder changes at di!erent time levels, the computa-

tional grid was translated with the cylinder, and the nodal values of vorticity calculated
from equation (10) were interpolated linearly to new grid locations, as described by
Anagnostopoulos (1989).

Thus, the solution algorithm consists of the following steps:

(a) evaluation of the stream function at the time level n from equation (9); the values of
vorticity calculated in the previous iteration have been interpolated to the grid locations of
the present time level, except from those lying on the solid boundary;
(b) the vorticity values at the no-slip boundary are derived from equation (8);
(c) the nodal values of vorticity at the time level n#1 are calculated from equation (10).

2.4. CALCULATIONS OF PRESSURE, SHEAR AND HYDRODYNAMIC FORCES

The pressure distribution throughout the #ow "eld can be derived from Poisson's equation
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where o is the #uid density and u and v are the two components of the #uid velocity,
evaluated from the values of the stream function. The equation of motion along the radial
direction on the cylinder surface yields the boundary condition for pressure on the cylinder
as
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where k is the viscosity of the #uid and A
c
is the instantaneous cylinder acceleration.

The application of Galerkin's method to equation (11) for an element e and assembly
throughout the domain yields
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in which [K
5
] is a square matrix, while MR
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The integration is performed only on the cylinder surface, where a natural boundary
condition for pressure is speci"ed, according to equation (12).

The shear stress on the cylinder can be calculated from
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where f
w

denotes the vorticity on the cylinder.
The drag and lift forces per unit cylinder length are calculated from the integration of

shear stress and pressure around the cylinder:
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where h is the angle de"ning the location of the point considered from the leading edge of
the cylinder in the clockwise direction, as shown in Figure 1. From F

D
and F

L
, the

nondimensional coe$cients C
D
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L

can be derived, according to
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where D denotes the cylinder diameter.

3. APPLICATION AND RESULTS

The numerical simulations in the present investigation were conducted at Re"106. The
Reynolds number was kept equal to that used for the numerical study of #ow past a "xed
cylinder (Anagnostopoulos 1997), in order to compare the results when the cylinder
oscillates at various frequencies and amplitudes with those of the "xed cylinder case. As
stated earlier, the cylinder oscillation frequency, f

c
, was varied between 0)80 and 1)20 of the

Strouhal frequency, f
s
, and the oscillation amplitude, A, was extended to 50% of a cylinder

diameter.
In all cases the cylinder was excited sinusoidally, and its motion started from the position

of minimum displacement. The corresponding equation of motion is

y"A sin(u
c
t!n/2), (19)

where u
c
is the circular frequency of oscillation, equal to 2nf

c
. The starting solution for the

#ow "eld was the fully developed vortex street around a "xed cylinder, as derived by
Anagnostopoulos (1997). The solution continued until the #ow pattern and the hy-
drodynamic forces became periodic or quasiperiodic. Quasiperiodic motion occurs outside
lock-in, or when the cylinder oscillation frequency is higher than the natural shedding
frequency, as will be explained later. In many cases periodicity or quasiperiodicity was
reached after many oscillation cycles from the inception of the cylinder oscillation, thus
extensive computer resources were required.
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For each case considered, the solution yielded the distribution of stream function,
vorticity and pressure throughout the solution domain, while the hydrodynamic forces on
the cylinder were evaluated from equations (16) and (17). As in the related study for a "xed
cylinder, the equivorticity lines generated from the vorticity distribution were favoured for
the determination of the wake geometry, since the points where the absolute value of
vorticity becomes maximum mark clearly the centres of the vortices.

3.1. THE LOCK-IN REGION

One of the most interesting characteristics of the #uid}body interaction is that of synchroni-
zation, or &&lock-in'', between the vortex shedding and the cylinder vibration frequencies.
When the wake is synchronized, the vortex-shedding frequency diverges from that corre-
sponding to a "xed cylinder and becomes equal to the frequency of the cylinder oscillation.
Experiments for the determination of the lock-in region of a cylinder forced to oscillate
transversely to the incident stream have been conducted by Koopmann (1967), Stansby (1976)
and Cheng & Moretti (1991), and computations by Lecointe & Piquet (1989), Meneghini
& Bearman (1995) and Akbari & Price (1997). The lock-in region boundaries derived from the
experiments by Koopmann (1967) and Stansby (1976) have been superimposed by Blevins
(1994). The "tting curves drawn by Blevins (1994; p. 55, "gure 3}10) in order to de"ne the
lock-in boundaries for the various frequency ratios examined, are shown to be symmetrical
with respect to the vertical line through f

r
"1. Although for f

r
(1 the limit of the lock-in

zone derived from the numerical studies by Meneghini & Bearman and Akbari & Price,
quoted previously, displays considerable agreement with experiment, synchronization is
observed at an amplitude higher than the experimental when f

r
exceeds unity.

It should be noted that, in the experiments the lock-in boundary was determined from
#uid velocity traces, whereas in the computational studies from the hydrodynamic forces.
Experimental velocity records used for the determination of the lock-in zone of a cylinder
oscillating transversely at A/D"0)20, have been presented by Honji & Taneda (1968).
Although the measurement of the hydrodynamic forces, especially at low Reynolds num-
bers, is a rather di$cult task, their derivation from a computational solution is straightfor-
ward. Since within the lock-in region the vortex-shedding frequency is coincident with the
frequency of the cylinder oscillation, it was thought that the periodicity of the hy-
drodynamic forces, especially of that in the transverse direction at a prominent frequency
equal to the cylinder oscillation frequency, constitutes a simple and safe criterion for the
determination of synchronization. Bearing the quoted discrepancy between computation
and experiment when f

r
exceeds 1 in mind, the determination of the boundaries of the

lock-in region was the "rst task of the present numerical study.
Computational tests were conducted for all frequency ratios considered in the present

study, except for the case when f
r
"1. For each frequency ratio, the computation started

with a low oscillation amplitude, which was increased in 0)01D steps, until the wake became
synchronized. The solution revealed di!erences in the #ow when f

r
was exceeding 1 from the

cases in which f
r
(1, therefore these two cases are examined separately.

In the range of frequency ratios lower than 1, when the #ow was unlocked, the traces of
the hydrodynamic forces were not periodic but appeared in modulated form. The time
records of the #uid velocities in the streamwise direction after an initial transient exhibited
also beating behaviour. As an example, the traces of the hydrodynamic forces for f

r
"0)90

and A/D"0)08 just outside lock-in are presented in Figure 2(a), from the 10th period
onwards. In all force traces presented in this study, the time base is the real time t divided by
the cylinder oscillation period, denoted as ¹

c
. According to equation (19), the cylinder

reaches its lowermost position at the beginning of each oscillation cycle. After a transient
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state of approximately 16 periods from the inception of the cylinder oscillation in which the
mean drag and the lift amplitude are magni"ed, the hydrodynamic forces become
modulated. The power spectrum of the lift force depicted in Figure 2(b), displays a peak at
a frequency slightly lower than the natural shedding frequency. The traces of the #uid
velocity were also modulated, and the vortex-shedding frequency determined from these
traces was found to be in"nitesimally (by 0)8%) higher than the cylinder oscillation
frequency at these excitation conditions close to the lock-in boundary. Therefore, when the
cylinder oscillates at f

r
"0)90 and A/D"0)08, although the #ow remains unlocked, it is

a!ected strongly by the cylinder motion, displaying di!erent characteristics from the "xed
cylinder case. This is a typical example of the &&receptivity zone'', as de"ned by Karniadakis
& Triantafyllou (1989).

When the frequency ratio exceeds unity, the situation becomes more complicated.
Numerical tests at this range revealed that the hydrodynamic forces were not periodic at
subsequent cycles but exhibited beats for all oscillation amplitudes examined, except for the
value A/D"0)50. In spite of the modulation, the average frequency of the lift force is equal
to the cylinder oscillation frequency, as illustrated for the sample case f

r
"1)10 and

A/D"0)10, depicted in Figure 3(a). The power spectrum of the lift force displayed in
Figure 3(b) shows clearly that the prominent frequency is equal to the cylinder oscillation
frequency, whereas a smaller component can be seen at a frequency approximately 85% of
f
c
. When the oscillation amplitude was increased, the intensity of beating was reduced, as

will be shown later.
In an attempt to clarify the situation, the time history of the streamwise #uid velocity was

also examined. Since, by de"nition, lock-in is the situation where the vortex-shedding
frequency coincides with the cylinder oscillation frequency, it was thought instructive to
determine the vortex-shedding frequency from velocity traces and compare it with the
cylinder oscillation frequency. As an example, the time history of the streamwise component
of the #uid velocity for f

r
"1)10 and A/D equal to 0)10, 0)12, 0)13 and 0)20 is displayed in

Figure 4(a}d). The velocity traces of Figure 4 correspond to a point located at a distance
x/D"1)28 and y/D"!0)64 from the centre of the cylinder cross-section. In all these
"gures, low-frequency periodicity is detectable, apart from the frequency corresponding to
the shedding of vortices at successive cycles. In spite of the #uctuations of the velocity signal
observed between di!erent cycles, the time required for the shedding of a number of
consecutive vortices is equal, or very close, to the time required for the completion of the
same number of cylinder oscillation cycles. This becomes evident comparing the period of
the low-frequency beats to the cylinder oscillation period. In Figure 4(b), for example, after
the initial transient in the "rst 10 cycles, a sequence of beats is observed, the period of which
is alternatively "ve and seven oscillation cycles. On the other hand, in Figure 4(d), the
period of each low-frequency beat is equal to four oscillation cycles.

The power spectra in Figure 5(a}d) generated from the velocity traces of Figure 4(a}d) are
illuminating. In Figure 5(a) which corresponds to A/D"0)10, three peaks are detectable;
one at a frequency by 1)5% lower than the cylinder oscillation frequency, another equal to
85% of the oscillation frequency, while the prominent peak corresponds to 18% of f

c
and is

associated with the low-frequency modulation. The peak at 85% of f
c
is in accord with that

observed at the same frequency in the power spectrum of the lift force, depicted in
Figure 3(b). As the oscillation amplitude is increased to 12% of the diameter, a peak exists in
Figure 5(b) at a frequency by 0)8% lower than the cylinder oscillation frequency, while
another is detectable at the natural shedding frequency. The peaks at 85% of f

c
and those

corresponding to the low-frequency modulation are still present. When the oscillation
amplitude is increased to 13% of a diameter, the prominent frequency is absolutely
coincident with the cylinder oscillation frequency, while the components at 82% of f and of
c



Figure 2. (a) Time history of the hydrodynamic forces, expressed as force coe$cients, for f
r
"0)90 and

A/D"0)08 (outside lock-in); (b) the corresponding power spectrum of the lift force trace.
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Figure 3. (a) Time history of the hydrodynamic forces for f
r
"1)10 and A/D"0)10 (outside lock-in); (b) the

corresponding power spectrum of the lift force trace.
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the low-frequency beats are also detectable, although at a lower level. When the amplitude
becomes 20% of a diameter, the prominent component at the cylinder oscillation frequency
and another peak at 77% of f are present, as depicted in Figure 5(d).
c



Figure 4. Traces of the streamwise velocity for various oscillation amplitudes at f
r
"1)10: (a) A/D"0)10; (b)

A/D"0)12; (c) A/D"0)13; (d) A/D"0)20. The coordinates of the point of measurement are x/D"1)28 and
y/D"!0)63 from the cylinder centre.
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The power spectra of Figure 5(a}d) reveal the existence of peaks at frequencies ranging
between 77 and 85% of the cylinder oscillation frequency. These peaks can be interpreted
with reference to the velocity traces of Figure 4(a}d). In some cases the #uctuation of the
velocity trace which corresponds to a speci"c vortex-shedding cycle is much less intense,
which has a result the apparent reduction of the number of vortices shed during one beating
period by one. For example, in Figure 4(a), when t/¹

c
equals 41 or 48, the #uctuation of the

velocity signal is small. Although seven shedding cycles are clearly detectable in the "rst
low-frequency beat and six in the second, the small velocity #uctuations quoted previously
may give the impression of the shedding of six vortices during the "rst beat and "ve vortices
during the second. The situation is more pronounced in velocity traces at the same
streamwise distance from the cylinder, but closer to the wake centreline. Conversely, in
velocity records at a large lateral distance from the wake centreline, cycle-to-cycle #uctu-
ations were suppressed. This &&competition'' of the vortex-shedding frequency resulting from
the velocity traces is responsible for the prominent peak at 85% of the cylinder oscillation
frequency in Figure 5(a), apart from that very close to f

c
. The same reasoning can be used for

all other cases of Figure 5. In Figure 4(d), for example, the weakest velocity #uctuation in
a four-period beat contributes to a frequency component equal to 0)75f

c
, which is in close

agreement with the peak at 77% of f
c
displayed in the corresponding power spectrum of

Figure 5(d).
Consequently, if the power spectrum contains a prominent frequency absolutely equal to

the cylinder oscillation frequency as in Figure 5(c, d), the wake can be considered as
&&locked'', although other frequencies may be present at a lower level. Therefore, for the
determination of the lock-in boundary when f

r
'1, the power spectra were generated from

the #uid velocity traces. When the prominent frequency was absolutely equal to the cylinder



Figure 5. Power spectra of the streamwise velocity traces depicted in Figure 4: (a) A/D"0)10; (b) A/D"0)12; (c)
A/D"0)13; (d) A/D"0)20.
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oscillation frequency, as in the case illustrated in Figure 5(c) where f
r
"1)10 and A/D"0)13,

the wake was characterized as &&synchronized''. It is evident that, for a constant frequency
ratio, synchronization persisted for a further increase of the amplitude. It should also be
stressed that in some cases the receptivity zone may be very extended. For f

r
"1)20 for

example, although an absolutely synchronized wake is observed at A/D"0)20, the vortex-
shedding frequency is just by 0)7% lower than the cylinder oscillation frequency, at an
amplitude equal to 12% of a diameter.

The boundaries of the lock-in region are shown in Figure 6. For f
r
(1 they are similar to

those found experimentally by Koopmann (1967) at Re"100, whereas for f
r
'1 lock-in

occurs at higher oscillation amplitudes than in the experiment, except from the case
f
r
"1)20. It should be stressed that the results of experimental studies at higher Reynolds

numbers (Stansby 1976; Cheng & Moretti 1991) are qualitatively similar to Koopmann's,
indi!erently if f

r
is greater or lower than 1.

From the previous discussion it has become evident that, when the oscillation amplitude
exceeded a threshold, although the velocity traces were not periodic at consecutive cycles,
the time required for the shedding of a number of successive vortices, was absolutely equal
to the time required for the completion of the same number of oscillation cycles. It seems,



Figure 6. Boundary of the lock-in region: , present study; , experiments by Koopmann (1968).
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therefore, that for f
r
'1 there exists a mechanism which renders the wake aperiodic,

although the wake can be considered as locked. The aperiodic character of the wake re#ects
on the time history of the hydrodynamic forces. Thus, for f

r
'1 the periodicity of force

traces seems to constitute a misleading criterion for the assessment of synchronized
conditions; therefore, the velocity traces should be used for the determination of the lock-in
zone.

The lack of agreement between computations and experiments at f
r
'1 has intrigued

Gri$n & Hall (1995), who attributed the fact to di!erences in #uid media and limitations
imposed by the two-dimensional computations. Although the two-dimensional character of
the computations may constitute a serious restriction, the previous reasoning provides
a good explanation for the discrepancy, if the cycle-to-cycle periodicity of the hy-
drodynamic forces is used as the criterion of a synchronized wake. The discrepancy with the
experiment, which still exists at f

r
'1 when the velocity traces are used for the determina-

tion of vortex-shedding frequency from a power spectrum, may be attributed to an
uncertainty, owing to the great extent of the receptivity zone.

3.2. THE HYDRODYNAMIC FORCES

The time histories of the nondimensional drag and lift forces on the cylinder for various
amplitudes and frequencies of oscillation within the lock-in region are depicted in
Figures 7}18. When f

r
41, the hydrodynamic forces undergo a transient in the initial

periods of the cylinder motion and then become fully periodic. For a constant frequency
ratio, the establishment of periodicity is faster as the oscillation amplitude is increased.
A component at the "rst harmonic is detectable in the traces of the drag force, which
becomes less pronounced as the oscillation amplitude increases. Moreover, Figures 9}11
dictate that, when f diverges from 1, the time history of the lift force is not absolutely
r



Figure 7. Time history of the hydrodynamic forces for f
r
"1 and A/D"0)10.

Figure 8. Time history of the hydrodynamic forces for f
r
"1 and A/D"0)40.
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Figure 9. Time history of the hydrodynamic forces for f
r
"0)95 and A/D"0)40.

Figure 10. Time history of the hydrodynamic forces for f
r
"0)90 and A/D"0)40.
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Figure 11. Time history of the hydrodynamic forces for f
r
"0)80 and A/D"0)40.

Figure 12. Time history of the hydrodynamic forces for f
r
"1)05 and A/D"0)11.
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Figure 13. Time history of the hydrodynamic forces for f
r
"1)05 and A/D"0)20.

Figure 14. Time history of the hydrodynamic forces for f
r
"1)05 and A/D"0)30.
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Figure 15. Time history of the hydrodynamic forces for f
r
"1)05 and A/D"0)40.

Figure 16. Time history of the hydrodynamic forces for f
r
"1)05 and A/D"0)50.
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Figure 17. Time history of the hydrodynamic forces for f
r
"1)10 and A/D"0)20.

Figure 18. Time history of the hydrodynamic forces for f
r
"1)20 and A/D"0)20.
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sinusoidal. A power spectrum reveals the existence of a component at the natural shedding
frequency, apart from the dominant peak at the cylinder oscillation frequency.

When f
r
exceeds 1 the hydrodynamic forces are not periodic at subsequent cycles, except

from the cases in which A/D"0)50. Figures 12}16 indicate that, when f
r
equals 1)05, the

hydrodynamic forces undergo a transient at the early stages from the inception of the
cylinder motion, and afterwards the quasiperiodic or periodic (at A/D"0)50) state occurs.
Examination of the same "gures reveals that the number of periods required for the
completion of the transient decreases as the oscillation amplitude is increased. For
A/D"0)11 the transient is completed within 40 oscillation cycles, which are reduced to 12
as A/D is increased to 0)30. The force traces of Figures 13, 17 and 18 suggest that the
increase of the oscillation frequency acts to reduce the number of cycles required for the
completion of the transient.

The mean value of the dimensionless drag force exerted on the cylinder, the amplitude of
the lift coe$cient and the phase angle between the lift force and the cylinder displacement
when periodicity or quasiperiodicity was reached, are depicted in Figures 19}21. The values
of mean drag and lift amplitude in Figures 19 and 20 corresponding to a "xed cylinder
(A/D"0) were derived by Anagnostopoulos (1997) in the related study of vortex shedding
past a "xed cylinder. For frequency ratios higher than 1 and in the range of oscillation
amplitudes in which the traces are not periodic, average values were obtained from a sample
containing many oscillation cycles, outside the initial transient. Figure 19 reveals that for
f
r
41 the increase of oscillation amplitude magni"es the mean drag when the oscillation

frequency is maintained constant. Moreover, for constant amplitude of the cylinder oscilla-
tion, the drag force exerted on the cylinder decreases as the oscillation frequency is reduced
Figure 19. Mean value of the dimensionless drag force exerted on the cylinder inside the lock-in region: }s},
f
c
/f
s
"0)80; }h}, f

c
/f
s
"0)90; }n}, f

c
/f
s
"0)95; }*}, fc

/f
s
"1)00; }m}, f

c
/f
s
"1)05; }j}, f

c
/f
s
"1)10; }d}, f

c
/f
s
"1)20.



Figure 20. Amplitude of the lift coe$cient within the lock-in region: }s}, f
c
/f
s
"0)80; }h}, f

c
/f
s
"0)90; }n},

f
c
/f
s
"0)95; }*}, f

c
/f
s
"1)00; }m}, f

c
/f
s
"1)05; }j}, f

c
/f
s
"1)10; }d}, f

c
/f
s
"1)20.
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below the natural shedding frequency. The increase of the cylinder oscillation frequency
above the natural shedding frequency causes reduction of the mean drag. For f

r
higher than

1, the drag increases with increasing oscillation frequency when the amplitude is maintained
constant. For constant oscillation frequency the drag experiences small #uctuations as the
oscillation amplitude is increased from the lower limit of the lock-in boundary to 30% of
the cylinder diameter. Then the drag increases substantially with the oscillation amplitude.

Figure 20 suggests that, when the oscillation frequency remains constant, the amplitude
of the lift force exerted on the cylinder increases with the oscillation amplitude. On the other
hand, when the oscillation amplitude remains the same, the lift amplitude increases
continually as the frequency ratio is increased gradually from 0)80 to 1)20. It is interesting to
note, that the amplitude of C

L
at f

r
"1)20 and A/D"0)50, is 10 times higher than the

stationary cylinder value.
In the range of frequency ratios between 0)90 and 1, the phase angle, u, between the lift

force and the cylinder displacement decreases with increasing oscillation amplitude when
the oscillation frequency is maintained constant. It is interesting to note the almost constant
value of the phase angle for f

r
"0)80 throughout the amplitudes examined in the lock-in

region, and the abrupt decrease of u in the low-amplitude regime when f
r
equals 0)90 or 0)95.

For f
r
'1 the e!ect of the frequency and amplitude of the cylinder oscillation on the phase

angle is small, although a decrease is observed when f
r
increases at constant amplitude.

When the frequency ratio exceeds 1, the phase angle ranges between 26 and 363 throughout
the lock-in region, much lower than in the cases when f

r
41. The variation of the phase

angle as the frequency and amplitude of oscillation are altered, is associated with the timing
of vortex shedding past the moving cylinder.



Figure 21. Phase angle between the lift force and the cylinder displacement: }s}, f
c
/f
s
"0)80; }h}, f

c
/f
s
"0)90;

}n}, f
c
/f
s
"0)95; }*}, f

c
/f
s
"1)00; }m}, f

c
/f
s
"1)05; }j}, f

c
/f
s
"1)10; }d}, f

c
/f
s
"1)20.
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The comparison of the present results to the experimental values of the drag force by
Sarpkaya (1978) at Reynolds numbers in the range between 5000 and 25 000 and to the
values of the drag, lift and phase angle measured by Gopalkrishnan (1993) at Re around
10 000 is interesting. The variations of the nondimensional mean drag and lift amplitude
when the oscillation amplitude and frequency are altered follow the same trend, but the
e!ect of the oscillation on the magni"cation of the mean drag is greater than that detected in
the present study, especially in Sarpkaya's results. The phase angle in Gopalkrishnan's
experiments decreases abruptly as the oscillation frequency is increased near resonance,
throughout the amplitudes up to A/D"0)50. In the present study, this is the case only for
A/D"0)10, whereas the phase angle experiences a milder decrease at higher oscillation
amplitudes.

3.3. THE WAKE GEOMETRY

To investigate the e!ect of the transverse cylinder motion of the vortex street wake the
equi-vorticity lines were favoured, because their illustration is advantageous for the deter-
mination of the centres of the vortices. The equivorticity lines for various amplitudes and
frequencies of oscillation when the #ow has settled (corresponding to the periodic or
quasiperiodic regime of the hydrodynamic forces) are presented in Figures 22}25. Through-
out the study, the vorticity has been nondimensionalized from the formula f*"fD/2;.
For reasons of consistency the time instant depicted in all cases corresponds to the point of
zero de#ection, as the cylinder moves upwards. Figure 22, which illustrates the wake
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Figure 24. Vorticity contours for f
r
"1)05 and A/D"0)15.
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geometry for f
r
"1 and A/D extending up to 0)50, reveals that the longitudinal spacing,

when stabilized, varies inversely with the oscillation amplitude for A/D in the range between
0)05 and 0)40. A further increase of A/D to 0)50 leaves the longitudinal spacing unaltered.
The reduction of the longitudinal spacing at high amplitudes has as e!ect the coalescence of
equal-sign vortices close to the downstream boundary, as depicted in Figure 22(e, f). On the
other hand, the increase of the oscillation amplitude, acts to increase the spacing of vortices
in the transverse direction. For the investigation of the e!ect of the oscillation frequency on
the wake geometry, the equivorticity lines for constant A/D equal to 0)40 are depicted in
Figure 23, when the frequency ratio varies between 0)80 and 1. These "gures suggest that
when A/D is maintained constant, both the longitudinal and the lateral spacing increase as
the oscillation frequency of the cylinder decreases, the increase of the longitudinal spacing
being more spectacular. The vorticity contours for f

r
"1)05 and A/D"0)15 are depicted in

Figure 24. This was an exceptional case in the range f
r
'1, since periodicity was maintained

over several oscillation cycles at low amplitude. Comparison with frames 22(b) and 22(c)
which illustrate the vorticity contours at f

r
"1 and A/D equal to 0)10 and 0)20, reveals that

the timing of vortex shedding in these two frequency ratios is di!erent, since the vortex
being shed below the cylinder in Figure 24 is less developed than the corresponding vortices
of frames 22(b) and 22(c). Moreover, the vortices close to the cylinder of Figure 24 appear
rounder and less inclined to the horizontal than their counterparts in Figure 22(a, b).

Figure 25 indicates that for f
r
"1)10, the vortex pattern is quite di!erent from that

observed when f
r
41, throughout the amplitudes examined in the lock-in region. The

vortex pattern is aperiodic and irregular, except from the case A/D"0)50 displayed in
Figure 25(d). Nevertheless, even in Figure 25(d), the vortex spacing does not remain
absolutely constant, especially in the streamwise direction. The situation remains the same,
when f

r
becomes equal to 1)05 and 1)20. An exception is the case f

r
"1)05 and A/D"0)15

where a regular vortex street wake is maintained over a number of periods, as already
stated.

It was mentioned previously that the aperiodic character of the hydrodynamic forces
when f

r
exceeds 1, hints to the nonperiodicity of the #ow pattern. In an attempt to con"rm

this argument, the equivorticity lines for f
r
"1)05 and A/D"0)40 at six time instants

separated successively by an interval of one oscillation period are shown in Figure 26. In all
frames, the cylinder de#ection is very close to zero, as the cylinder moves upwards.
Figure 26 shows clearly that the #ow pattern is not periodic at consecutive cycles but
periodicity is established every "ve oscillation cycles, a result which is compatible to the
force traces of Figure 27. An interesting observation is the merging process occurring as
the vortices are convected downstream, moving with di!erent velocities. For example, the
vortices;

3
and ;

4
shed consecutively from the upper part of the cylinder coalesce to form

one vortex, and the same happens for the vortices ¸
2

and ¸
3

shed from the lower part. The
merging of adjacent vortices provides an explanation for the change of vortex spacing with
increasing downstream distance from the cylinder.
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Figure 27. Traces of the hydrodynamic forces for f
r
"1)05 and A/D"0)40, including the time instants at which

the vorticity contours of Figure 26 are presented.

Figure 28. Spacing of vortices in the streamwise direction inside the lock-in region: }s}, f
c
/f
s
"0)80; }h},

f
c
/f
s
"0)90; }n}, f

c
/f
s
"0)95; }*}, f

c
/f
s
"1)00; }m}, f

c
/f
s
"1)05.
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Figure 29. Spacing of vortices in the transverse direction inside the lock-in region: }s}, f
c
/f
s
"0)80; }h},

f
c
/f
s
"0)90; }n}, f

c
/f
s
"0)95; }*}, f

c
/f
s
"1)00; }m}, f

c
/f
s
"1)05.
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The longitudinal spacing of vortices, denoted as a, for all oscillation frequencies and
amplitudes examined for f

r
41, is presented in Figure 28. For f

r
equal to 0)90, 0)95 and 1 the

longitudinal spacing decreases as the oscillation amplitude is increased to 0)40D. A further
increase of A/D to 0)50 leaves the longitudinal spacing unaltered. It is interesting to note
that for f

r
equal to 0)80, the longitudinal spacing is independent of the oscillation amplitude.

Figure 28 also reveals that when A/D is maintained constant, the longitudinal spacing
increases as the oscillation frequency of the cylinder is decreased below the natural shedding
frequency.

The lateral spacing of vortices, b, is summarized for f
r
41 in Figure 29. When the

oscillation frequency is maintained constant, the increase of the oscillation amplitude acts
to magnify the vortex spacing in the lateral direction. On the the other hand, for constant
oscillation amplitude, the lateral spacing of the vortices varies inversely with the frequency
of the cylinder oscillation. This is not valid in the range of amplitudes A/D(0)20, in which
the lateral spacing becomes maximum at f

r
"1. From Figures 28 and 29 it is interesting to

note that the longitudinal and lateral spacings for the case when f
r
"0)95 and A/D"0)30

fall outside the general trend. The computation was repeated for this case preclude
a possible error in the computing process. A plausible explanation for the anomaly could be
given.

The spacing ratio, b/a, is illustrated in Figure 30. When the oscillation frequency remains
constant the increase of the amplitude causes magni"cation of the spacing ratio, while at
constant oscillation amplitude, the spacing ratio decreases with decreasing oscillation
frequency. A striking exception is the case when f

r
"0)95 and A/D"0)30, as quoted

previously.



Figure 30. Vortex-spacing ratio within lock-in region: }s}, f
c
/f
s
"0)80; }h}, f

c
/f
s
"0)90; }n}, f

c
/f
s
"0)95; }*},

f
c
/f
s
"1)00; }m}, f

c
/f
s
"1)05.
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4. CONCLUSIONS

The "nite element technique was used for the investigation of laminar #ow past a circular
cylinder forced to oscillate transversely to the incident stream. When the frequency of the
oscillating cylinder is equal or lower than the natural vortex-shedding frequency a periodic
wake is formed behind the cylinder, whereas, when the oscillation frequency exceeds that of
the natural shedding of vortices a quasiperiodic wake occurs, in which periodicity is
established after a number of oscillation cycles. An exception is the case A/D"0)50, in
which cycle-to-cycle periodicity was detected.

Due to the aperiodic character of the wake at f
r
'1, the velocity traces were favoured for

the determination of the boundary of the lock-in zone, rather than the time histories of the
hydrodynamic forces. The boundary of the lock-in region when f

r
(1 agrees considerably

well with experimental evidence, while for f
r
'1 discrepancy with the experiment in some

cases is observed.
The time histories of the hydrodynamic forces until periodicity or quasiperiodicity was

established, were calculated for the various cases of the cylinder excitation. The #ow settled
after many oscillation cycles, especially for f

r
'1; thus extensive computer resources were

required for the solution. The hydrodynamic forces and the phase angle between the lift
force and the cylinder displacement within the lock-in region are presented in cumulative
diagrams. These diagrams lead to the conclusion that when the oscillation frequency
remains constant, the mean drag and the lift amplitude increase with the oscillation
amplitude, whereas for constant oscillation amplitude the increased value of oscillation
frequency magnify the amplitude of the lift force. The phase angle between the #uctuating
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lift force and the cylinder displacement decreases as the oscillation amplitude is increased at
constant frequency in the range between 1 and 0)90, whereas, for frequency ratio equal to
0)80 the phase angle remains almost constant. When f

r
exceeds 1 the change of the

oscillation parameters have little e!ect on the phase angle, which remains substantially
lower compared to the cases when f

r
51.

In spite of the periodic character of the #ow observed for A/D"0)50 when f
r
exceeds 1,

the vortex spacing, especially the longitudinal one, is altered with downstream distance
from the cylinder. Thus, results concerning the vortex spacing were presented only for
f
r
41, an exception being the case f

r
"1)05 and A/D"0)15. For constant oscillation

frequency, the increase of the oscillation amplitude leads to reduced longitudinal and
increased lateral spacing of the vortices, while the spacing in both directions increases as the
oscillation frequency is reduced at constant amplitude. An exception in the case when
f
r
equals to 0)80, in which the longitudinal spacing remains constant throughout the range

of amplitudes examined inside lock-in.
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